lunes, 21 de noviembre de 2011

TODA ACCION TIENE UNA REACCION

Tercera ley de Newton o Ley de acción y reacción
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.[6]

La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.[7] Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.

  • Tercera Ley de Newton. La formulación original de la tercera ley por parte de Newton implica que la acción y reacción, además de ser de la misma magnitud y opuestas, son colineales. En esta forma la tercera ley no siempre se cumple en presencia de campos magnéticos. En particular, la parte magnética de la fuerza de Lorentz que se ejercen dos partículas en movimiento no son iguales y de signo contrario. Esto puede verse por cómputo directo. Dadas dos partículas puntuales con cargas q1 y q2 y velocidades \mathbf{v}_i, la fuerza de la partícula 1 sobre la partícula 2 es:

  • \mathbf{F}_{12}= q_2 \mathbf{v}_2\times \mathbf{B}_1 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_2\times (\mathbf{v}_1\times\mathbf{\hat{u}}_{12})}{d^2}
    donde d la distancia entre las dos partículas y \mathbf{\hat{u}}_{12} es el vector director unitario que va de la partícula 1 a la 2. Análogamente, la fuerza de la partícula 2 sobre la partícula 1 es:
    \mathbf{F}_{21}= q_1 \mathbf{v}_1\times \mathbf{B}_2 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_1\times (\mathbf{v}_2\times(-\mathbf{\hat{u}}_{12}) )}{d^2}
    Empleando la identidad vectorial \mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}, puede verse que la primera fuerza está en el plano formado por \mathbf{\hat{u}}_{12} y \mathbf{v}_1 que la segunda fuerza está en el plano formado por \mathbf{\hat{u}}_{12} y \mathbf{v}_2. Por tanto, estas fuerzas no siempre resultan estar sobre la misma línea, aunque son de igual magnitud.                                                                                        



         


    No hay comentarios:

    Publicar un comentario